Comparison of the axial resolution of practical Nipkow-disk confocal fluorescence microscopy with that of multifocal multiphoton microscopy: theory and experiment.

نویسندگان

  • A Egner
  • V Andresen
  • S W Hell
چکیده

We compare the axial sectioning capability of multifocal confocal and multifocal multiphoton microscopy in theory and in experiment, with particular emphasis on the background arising from the cross-talk between adjacent imaging channels. We demonstrate that a time-multiplexed non-linear excitation microscope exhibits significantly less background and therefore a superior axial resolution as compared to a multifocal single-photon confocal system. The background becomes irrelevant for thin (< 15 microm) and sparse fluorescent samples, in which case the confocal parallelized system exhibits similar or slightly better sectioning behaviour due to its shorter excitation wavelength. Theoretical and experimental axial responses of practically implemented microscopes are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multifocal multiphoton microscopy: a fast and efficient tool for 3-D fluorescence imaging

Multifocal multiphoton microscopy (MMM) is an efficient and technically simple method for generating multiphoton fluorescence images. Featuring the high axial resolution of confocal and multiphoton scanning microscopes, MMM also achieves high speed in 3-D microscopy. In this paper, examples of fast-mode 3-D microscopy are given including imaging of fixed brain tissue as well as living PC12 cell...

متن کامل

Nipkow confocal imaging from deep brain tissues.

One of the problems in imaging from brain tissues is light-scattering. Thus, multiphoton laser scanning microscopy is widely used to optically access fluorescent signals located deeply in tissues. Here we report that Nipkow-type spinning-disk one-photon confocal microscopy, which embodies high temporal resolution and slow photobleaching, is also capable of imaging tissues to a depth of up to 15...

متن کامل

Scattering suppression and confocal detection in multifocal multiphoton microscopy.

We have developed a new descanned parallel (32-fold) pinhole and photomultiplier detection array for multifocal multiphoton microscopy that effectively reduces the blurring effect originating from scattered fluorescence photons in strongly scattering biological media. With this method, we achieve a fourfold improvement in photon statistics for detecting ballistic photons and an increase in spat...

متن کامل

Time-multiplexed multifocal multiphoton microscope.

We resolve the classical conflict between parallelization and axial resolution in three-dimensional fluorescence microscopy through time-multiplexed multifocal multiphoton excitation. A rotating array of microlenses on a disk splits ultrafast laser pulses in such a way that an array of high-aperture foci are created in the sample. Two rigidly mounted corotating glass disks with suitable arrays ...

متن کامل

Time multiplexing and parallelization in multifocal multiphoton microscopy

We investigate the imaging properties of high-aperture multifocal multiphoton microscopy on the basis of diffraction theory. Particular emphasis is placed on the relationship between the sectioning property and the distance between individual foci. Our results establish a relationship between the degree of parallelization and the axial resolution for both two- and three-photon excitation. In ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of microscopy

دوره 206 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2002